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Resorting to what is termed informational statistical thermodynamics, namely, the microscopic foundations
of irreversible thermodynamics in terms of the nonequilibrium informational ensemble, the problem of heat
transport in a system of bosons is considered. In a truncated description of the macroscopic state of the system
we derive the equations of evolution appropriate for an extended hydrodynamiclike approach. We particularize
the analysis to those macrovariables corresponding to energy density and energy flux whose equations of
evolution are nonlinear generalizations of Mori-Langevin equations. We arrive at an equation of propagation of
thermal waves with damping. The thermal excitations are of the type of second sound. The different transport
coefficients~like velocity of propagation, thermal diffusivity, relaxation times, etc.! receive an interpretation at
the microscopic mechano-statistical level. We derive the limiting conditions to be imposed to recover Fourier’s
theory as an approximation.@S1063-651X~96!07311-4#

PACS number~s!: 05.70.Ln, 82.20.Db, 82.20.Mj

I. INTRODUCTION

The analysis of heat propagation is one of the central
motivations in irreversible thermodynamics. A thorough and
deep description of results in this area, is due to Joseph and
Preziosi@1#. In classical irreversible thermodynamics~CIT!
@2#, based on the local equilibrium assumption, the theory of
heat propagation resorts to Fourier’s constitutive equation
which leads to a parabolic equation of diffusion. This implies
that the thermal signals propagate at infinite speed at large
frequencies, and further there is no agreement with experi-
mental evidence in the short wavelength and/or high fre-
quency domains as well as for large Mach numbers. To over-
come these difficulties there exist several attempts to go
beyond CIT in terms of phenomenological thermodynamic
theories like extended irreversible thermodynamics~EIT!
@3,4#. In EIT, Fourier’s diffusion equation is generally re-
placed by a hyperbolic equation, of the telegraphist type,
corresponding to wave propagation with damping. In a dif-
ferent approach, based on Boltzmann’s equation for the pure
phonon field, Guyer and Krumhansl@5# considered heat
transport in dielectric crystals at low temperature and arrive
at the conclusion that second sound may appear in some
temperature range. The phenomenon of second sound was
considered in the early works of Tisza@6# and Landau@7# in
the case of helium II, and experimentally verified by Pesch-
kov @8#. But second sound can be sustained in phononlike
fluids in general@9#, as well as in a system of electron car-
riers @10#.

A rederivation of the Guyer-Krumhansl equation for heat
transport in dielectrics in the framework of EIT, along with a
variational formulation, is given in Ref.@11#. In the present
paper, we consider the general case of energy and tempera-

ture propagation in a system of bosons in terms of a
mechano-statistical formalism, namely, the nonequilibrium
statistical operator method which is based on the
information-theoretical approach of maximization of infor-
mational entropy~MaxEnt-NESOM for short! @12,13#, and
Zubarev’s approach@14#. The MaxEnt-NESOM provides a
nonlinear quantum transport theory of a large scope@15#—a
far-reaching generalization of Mori’s approach. In this
theory, the transport coefficients, which are open parameters
in phenomenological thermodynamic theories, are inter-
preted at the microscopic level. That is, they are given in
terms of the underlying dynamical theory averaged with an
appropriate MaxEnt-NESOM statistical distribution that
characterizes the nonequilibrium macroscopic state of the
system, and allows to incorporate spatial correlations~non-
locality in space! and time correlations~memory effects!.

II. THE SYSTEM AND THE CHOICE
OF THE BASIC VARIABLES

Consider a system consisting of a fluid of bosons, for
example, the different branches of phonons in a solid state
sample. The fluid is assumed to be in interaction with a ther-
mal bath which is taken to be at a constant temperatureT0.
The system of bosons is taken to be initially in an homoge-
neous state of reference and subsequently subjected to the
presence of gradients of the different quantities that charac-
terize its macroscopic state. LetvqW be the frequency disper-
sion relation of these bosons, with wave vectorqW running
over an appropriate zone in reciprocal space~The Brillouin
zone in the case of crystals!. We write for the total Hamil-
tonian

Ĥ5Ĥ01Ĥ8, ~1!

where
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Ĥ05(
qW

\vqW~bqW
†bqW1 1

2 !1ĤB[Ĥb1ĤB , ~2a!

H85(
qW

~lqWwqWbq
†1lqW

*wqW
†bqW !1Ĥ1 . ~2b!

In Eq. ~2a! the first term is the Hamiltonian of the free
bosons, andHB that of the thermal bath. Equation~2b! rep-
resents the interaction between both subsystems, andH1 is
the contribution to the Hamiltonian associated to interactions
with external pumping sources. In these equationsb(b†) are
annihilation~creation! operators of bosons in the system con-
sidered,w~w†! are annihilation~creation! operators of excita-
tions associated to the thermal bath, andl is the coupling
strength with the upper asterisk denoting complex conjugate.
It is worth noticing that the separation of the Hamiltonian as
given by Eq. ~1! is an important prerequisite in MaxEnt-
NESOM. The method proceeds as follows, a first step is to
provide a characterization of the macroscopic state of the
system in terms of an appropriate set of macrovariables. This
is based on the closure condition provided by the so-called
Zubarev-Peletminskii symmetry property@12–14,16#. This is
done in a step by step procedure. First, the total Hamiltonian
is separated into two parts—as done in Eq.~1!—whereH0
~called the relevant or secular part! is composed of the ki-
netic energies of the subsystems and, eventually, some of the
interactions, namely those strong enough to have associated
very short relaxation times~meaning those much smaller
than the characteristic time scale in the experiment!. The
other H8 contains the interactions related to the long-time
relaxation mechanisms. Zubarev-Peletminskii closure condi-
tion ~which at the mechano-statistical level is the counterpart
of the principle of equipresence in phenomenological ther-
modynamics@17#!, states that, givenH0 and the set of basic
variables, sayPj , the commutator ofPj andH must verify
that

@ P̂j ,Ĥ0#5(
k

a jkP̂k , ~3!

where, in an appropriate representation, thea’s arec num-
bers determined byH0.

In the present description we select as an initial
set of variables the density and energy density of the boson
system, together with the energy of the thermal bath. More
precisely, for convenience in the calculations we take their

Fourier amplitudes of wave vectorQW , namely,

$N(t),E(t),n(QW ,t),h(QW ,t),EB%, whereN andE are the ho-

mogeneous values (QW 50W ), n and« the inhomogeneous (QW

Þ0W ) contributions, andEB is the energy of the thermal bath.
These are the macrovariables; the corresponding dynamical

quantities are indicated byN̂,Ĥb ,n̂(QW ),ê(QW ),ĤB , with ĤB
andĤb , defined in Eq.~2a!. Application of the closure con-
dition of Eq. ~3! requires the introduction as basic variables

of the vectorial fluxes of particlespŴ (QW ), and of energy, de-

noted by IŴ(QW ), as well as all the higher order~tensorial!
fluxes of particles and energy. According to the procedure all

these quantities are viewed as basic variables. A truncation
procedure is required, and we take the basic set of dynamical
variables composed of

$N̂;Ĥb ;PŴ ;IŴ;n̂~QW !;ĥ~QW !;pŴ ~QW !;IŴ~QW !;ĤB%, ~4a!

quantities given by

n̂~QW !5(
qW

n̂qWQW ;

«̂~QW !5(
qW

\

2
~vqW 1Q

W 1vqW !n̂qWQW ;

pŴ ~QW !5(
qW

1

2
¹W qW~vqW 1QW 2vqW !n̂qWQW ;

IW~QW !5(
qW

\

4
~vqW 1QW 1vqW !¹W qW~vqW 1QW 2vqW !n̂qWQW ;

with

n̂qWQW 5b
qW 1QW
†

bqW ,

and the quantitiesN̂, Ĥb , P
Ŵ , andIŴ correspond to setQ50 in

the equations above. Moreover, the accompanying set of
thermodynamic macrovariables is indicated by

$N~ t !;E~ t !;PW ~ t !; IW~ t !;n~QW ,t !;h~QW ,t !;pW ~QW ,t !; IW~QW ,t !;EB%,
~4b!

where, we recall,QW Þ0 and the truncation process is dis-
cussed in Sec. V. The set of Eqs.~4! is a combination of
homogeneous and inhomogeneous quantities. All these quan-
tities are expressed per unit volume.

With the choice of Eqs.~4! the auxiliary coarse-grained
MaxEnt-NESOM statistical operator@12# is given by

r̄~ t,0!5expH 2f~ t !2F1~ t !N̂2F2~ t !Ĥb2FW 3~ t !•PŴ

2FW 4~ t !•IŴ02 (
QW Þ0

@ f 1~QW ,t !n̂~QW !1 f 2~QW ,t !ĥ~QW !

1 fW3~QW ,t !•pŴ ~QW !1 fW4~QW ,t !•IŴ~QW !#2b0ĤBJ , ~5!

wheref ensures the normalization ofr̄ ~it plays the role of
the logarithm of a nonequilibrium partition function!, the
eightF j and f j are MaxEnt-Lagrange multipliers~related to
the intensive variables of nonequilibrium thermodynamics!,
andb051/kBT0 . The MaxEnt-NESOM fine-grained statisti-
cal operator is a functional of the coarse-grained one of Eq.
~5!, which in the case of Zubarev’s approach is given by@14#

r«~ t !5expH ln r̄~ t,0!2E
2`

t

dt8e«~ t82t !
d

dt8
ln r̄~ t8,t82t !J ,

~6!
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where the infinitesimal positivee, which ensures the irrevers-
ible evolution of the system, goes to zero after the calcula-
tion of averages has been performed. Furthermore, the first
variable in the argument ofr̄ refers to the time dependence
of the Lagrange multipliers, while the second corresponds to
the time dependence of the dynamical variables in Heisen-
berg representation.

Having defined the macroscopic state of the system we
next look for its evolution under the action of thermal per-
turbations resulting from an inhomogeneous state of initial
preparation.

III. THE EQUATIONS OF EVOLUTION

Here we derive the equations of evolution for the basic
variables resorting to the MaxEnt-NESOM generalized non-
linear quantum transport theory@15#. According to this
theory, the Liouville equation for the statistical operator can
be transformed into an integral equation, which admits an
iterative solution. A detailed description can be found in
@16#. For the present purposes it suffices to mention that the
evolution equations for the basic variables can be written in
terms of an infinite series of contributions to the collision
operator. If we callQj and P̂j the basic variables and asso-
ciated dynamical quantities, respectively, we have that@15#

d

dt
Qj~ t !5 (

m50

`

V j
~m!~ t !, ~7!

where the right-hand side is composed of an infinite series of
partial collision operators, as described in Appendix A.

In what follows we stop the iterative process at the second
order ~that is we takem50; 1; and 2 which implies two-
particle collisions but includes nonlocality in space and
memory effects! to find, first for the homogeneous variables,
that

d

dt
N~ t !5

2p

\2 (
qW

ulqW u2A~qW ;t !, ~8a!

d

dt
E~ t !5

2p

\2 (
qW

ulqW u2\vqWA~qW ,t !1SE~ t !, ~8b!

d

dt
PW ~ t !5

2p

\2 (
qW

ulqW u2¹W qWvqWA~qW ,t !1SP~ t !, ~8c!

d

dt
IW~ t !5

2p

\2 (
qW

ulqW u2\vqW¹W qWvqWA~qW ,t !, ~8d!

where

A~qW ,t !5E
2`

` dv

p E
2`

t

dt8 exp$@«1 i ~vqW2v!#~ t82t !%

3@JqW~v!@nqW~ t8!11#2KqW~v!nqW~ t8!#, ~9a!

with, we recall,« going to zero, and

nqW~ t !5Tr$bqW
†bqW r̄~ t,0!%, ~9b!

We have also introduced the spectral representationsJ and
K for the average values of the excitations of the thermal
bath, namely,

^wqW
†~t!wqW&5E

2`

` dv

p
JqW~v!eivt, ~9c!

^wqW~t!wqW
†&5E

2`

` dv

p
KqW~v!eivt. ~9d!

Finally, SE(t) andSP(t) in Eqs.~8b! and ~8c! stand for the
contributions due to the pumping source, whose origin is in
the interaction energy operatorH1 of Eq. ~2b!. For simplic-
ity, we assume that the pumping source couples to the sys-
tem in such a way to increase the homogeneous part of the
energy and momentum, but does not affect the flux of energy
and the inhomogeneous variables. A continuous constant
pumping would produce a stationary homogeneous state af-
ter a transient time has elapsed; this condition will be used
later on.

The equations of evolution for the inhomogeneous~QÞ0!
variables are

]

dt
n~QW ,t !5 iQW •pW ~QW ,t !1(

qW
J~qW ,QW ;t !, ~10a!

]

]t
h~QW ,t !5 iQW • IW~QW ,t !1(

qW

\

2
~vqW 1QW 1vqW !J~qW ,QW ,t !,

~10b!

]

]t
pW ~QW ,t !5 iQW •w> ~QW ,t !1(

qW
vW ~qW ,QW !~JqW ,QW ;t !,

~10c!

]

]t
IW~QW ,t !5 iQW •c> ~QW ,t !1(

qW

\

2
~vqW 1QW 1vqW !

3vW ~qW ,QW !J~qW ,QW ;t !, ~10d!

where

J~qW ,QW ;t !5
p

\2 H E
2`

t

dt8e«~ t82t !ulqW u2@JqW~v!

2KqW~v!#exp$ i ~vqW2v!~ t82t !%

1same with exchangeqW→qW 1QW J nqWQW ~ t8!,

~11a!

w> andc> are the flux of the flux of matter and of energy,

nqWQW ~ t !5Tr$bqW 1QW
†

bqW r̄~ t,0!%, ~11b!

and

vW ~qW ,QW !5¹W qWvqW1
1

2
QW ¹qW

2vqW1••• ~11c!
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an expression that arises fromQW •vW 5(vqW 1QW 2vqW)/2, when

expanded in increasing powers ofQW .
We recall that we have assumed that the external sources act
only on the homogeneous variables, not being a supplier to
the inhomogeneous variables. Hence, the terms involvingJ
in Eqs. ~10! are exclusively of the kind of relaxation-
dissipative contributions as a result of the coupling with the
thermal bath.

At this point we clearly see that, as a consequence of the
truncation procedure in the choice of the basic variables, the
equations of evolution do not constitute a closed set. Hence,
the next step is to express the variables corresponding to the
higher order fluxesw> andc> in terms of the basic variables.
Taking into account the expressions for these higher order
fluxes and also the expressions for the collision operators@cf.
Eq. ~10a!# appearing in the right-hand side of Eqs.~10!, we
need to expressnqWQW (t) of Eq. ~11b! in terms of the basic
variables. For that purpose we first separate the homoge-
neous and inhomogeneous contributions in the auxiliary sta-
tistical operator of Eq.~5!, namely,

r̄~ t,0!5exp$A1B%/Tr$exp@A1B#%, ~12!

whereB refers to the inhomogeneous contribution, that is,

B52 (
QW Þ0

$ f 1~QW ,t !n̂~QW !1 f 2~QW ,t !ĥ~QW !1 fW3~QW ,t !•pŴ ~QW !

1 fW4~QW ,t !• Î ~QW !%, ~13!

while A contains the homogeneous contributions. We intro-
duce also the statistical operator for the homogeneous state,
defined by

r̄h~ t,0!5exp$2fh~ t !2F1~ t !N̂2F2~ t !Ĥp2FW 3~ t !•pŴ

2FW 4~ t !•IŴ2b0ĤB%, ~14!

with fh ensuring its normalization.
Resorting to Heims-Jaynes perturbation expansion for av-

erages@18#, we find at first order~linear approximation! in
the inhomogeneities contained in operatorB, that

nqWQW ~ t !5a1~qW ,QW ;t ! f 1~QW ,t !1a2~qW ,QW ;t ! f 2~QW ,t !

1aW 3~qW ,QW ;t !• fW3~QW ,t !1aW 4~qW ,QW ;t !• fW4~QW ,t !,

~15!

where the coefficientsaj (qW ,QW ;t) are listed in Appendix B.
After replacingnqWQW given by Eq.~15! in the expressions

for w> , c> , andJ of Eqs.~10!, the right-hand sides in Eqs.~10!
become dependent on the four Lagrangian multipliersf 1, f 2,

fW3, and fW4. But to close the system of equations, we can
relate these Lagrange multipliers to the basic variables since
the latter, are linear combinations ofnqWQW . We are then left
with a system of equations that can be written in the matri-
cial form

F n~QW ,t !

h~QW ,t !

pW ~QW ,t !

IW~QW , tW !

G52M̂ ~QW ,t !F f 1~QW ,t !f 2~QW ,t !

fW3~QW ,t !

fW4~QW ,t !

G . ~16!

For simplicity we take the limit of smallQ’s, and this as-
sumption allows us to neglectQ in all the kinetic coefficients
aj andM : this is equivalent to take in Eqs.~10!, which are
nonlocal in space and memory dependent, a local in space
approximation, meaning that spatial correlations are ne-
glected. In this limit matrixM simplifies considerably and its
elements are listed in Appendix C.

After inversion of matrixM we can, from Eq.~16!, obtain
the Lagrange multipliersf in terms of the inhomogeneous
variables, and next replacing in Eq.~15! these expressions
for the f j yieldsnqWQW in terms of the basic variables. We omit
the lengthy and cumbersome resulting expressions and limit
our present analysis to specific calculations for a simplified
situation in Sec. IV. The relevant point to be kept in mind
here is that we have derived a closed set of equations of
evolution for the selected basic variables of Eq.~4b!, with
the kinetic coefficients given at the microscopic level, that is
in terms of the dynamics of the constituent particles.

The set of equations of evolution describe transport of
matter and of energy and, as we have seen, both phenomena
are coupled together through cross-kinetic terms. In what
follows we concentrate our attention on the thermal motion
alone, decoupling it from the material motion, that is we
neglect cross-kinetic terms. As a consequence we have only
to consider the equations for the energy density and its flux.

IV. SECOND SOUND IN IST

Within the above assumptions, namely, decoupling of ma-
terial and heat motion, and omission of spatial correlations,
but keeping memory effects contained in the collision opera-
tor V~2! ~all other higher order collision operators are ne-
glected! we are left with relatively simple equations for the
energy density and its flux. First we note that under the con-
ditions just stated it follows that

nqWQW ~ t !5M22
21~ t !a2~qW ;t !h~QW ,t !1M44

21~ t !aW 4~qW ;t !• IW~QW ,t !,
~17!

wherea2(qW ;t) andaQ 4(qW ;t) stand fora2 andaW 4 of Appendix

B with QW 50. If in addition we assume isotropy the tensor
M> 44 becomes a scalar times the unit 1> tensor, given by

M44~ t !5
1

3 (
qW

~\vqW !2u¹W qWvqW u2h~qW ,t !1> , ~18!

with h defined in Eq.~C1.g! and sincevqW is an even function

of qW it follows thatMW 245MW 4250.
Replacing Eq.~17! into Eqs.~10b! and~10d! we find that

]

]t
h~QW ,t !5 iQW • IW~QW ,t !2Q«

21~ t !* h~QW ,t !, ~19a!
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]

]t
IW~QW ,t !5l«~ t !iQW h~QW ,t !2Q I

21~ t !* IW~QW ,t !

2L~ t !* ~Q21@QW QW # ! IW~QW ,t !, ~19b!

where* stands for the convolutionlike product defined by

Q«
21~ t !* h~QW ,t !5E

2`

`

dt8Q«
21~ t2t8;t8!h~QW ,t8!, ~20!

and so on; the presence of such terms clearly shows that
memory effects are incorporated in the theory. Furthermore,
in Eqs.~19! the time dependent kinetic coefficients, namely,
l« , L, Q« , andQI are given in Appendix D.

Furthermore, if we introduce the quantityb(QW ,t) such

that b(0,t)5F2(t) and b(QW ,t)5 f 2(QW ,t), for QW Þ0, and

«̂(QW ) such that«̂(0)5Hb and ĥ(QW )5 «̂(QW ), for QW Þ0, we
can write in the exponent of the statistical operator of Eq.~5!
that

F2~ t !Ĥb1 (
QW Þ0

f 2~QW ,t !ĥ~QW !5(
QW

b~QW ,t !«̂~QW !.

~21a!

Similarly, introducingaW (QW ,t) such thataW (QW ,t)5 fW4(QW ,t)

for QW Þ0, andJŴ (Q) such thatJŴ (0)5IŴ andJŴ (QW )5 IW(QW ) for

QW Þ0W , we can write

FW 4~ t !IŴ1 (
QW ÞO

fW4~QW ,t !IŴ~QW !5(
QW

aW ~QW ,t !JŴ ~QW ,t !.

~21b!

In the context of informational statistical thermodynamics

the Lagrange multiplierb(QW ,t) can be interpreted as the
Fourier transform of the reciprocal of a local nonequilibrium
temperature ~to be referred to as a quasitemperature!,
namely, b(rW,t)[1/kBT(rW,t) @19#. We can also write
T* (rW,t)5T* (t)1DT* (rW,t), whereT* is the average homo-
geneous nonequilibrium temperature andDT* its local de-
viation; in the linearized ~local! theory one has that
DT*!T* . On the other hand,

h~QW ,t !52M22~ t ! f 2~QW ,t !, ~22a!

IW~QW ,t !52M44~ t ! fW4~QW ,t !, ~22b!

for QW Þ0, as a result of Eq.~16! and isotropy, and making
use of the fact thatDT*!T* , we can write

¹W «~rW,t !52M22~ t !¹W b~rW,t !.
M22~ t !

kBT~ t !*
2 ¹W T~rW,t !. ~23!

We are now in condition to transform back the equations
of evolution, Eqs.~8b!, ~8d!, ~10b!, and~10c!, to obtain them
in direct space, where they read as

]

]t
«~rW,t !52div JW ~rW,t !2Q«

21~ t !* «~rW,t !1j«~ t !,

~24a!

]

]t
JW ~rW,t !52l«~ t !¹W «~rW,t !2Q I

21~ t !*JW ~rW,t !

2L~ t !* ~¹W 21@¹W ¹W # !JW ~rW,t !1jW I~ t !,

~24b!

where«(rW,t) andJW (rW,t) ~which are the averages ofê and

JŴ ! have the Fourier transforms«(QW ,t) andJW (QW ,t), while j«

andjW I account for the action of the external pumping source.
Equations~24! are local in space as a result of the ap-

proximation we introduced consisting in neglecting the de-

pendence onQW of the kinetic coefficientsaj (QW ,t) and

M (QW ,t). Moreover, Eqs.~24! are, within the approximations
we have introduced, of the type of Mori’s equations
@20#: the first term on the right-hand side is in Mori’s ter-
minology a precession term, while the second~encompassing
retroeffects or memory! is a relaxation term whereQ« andQI
play the role of relaxation times which, we recall, depend on
the time evolution of the homogeneous state of reference.

Let us return to Eq.~19b!, wherein the last term is ne-
glected ~L50! and take a quasistationary flux, namely,

]JW /]t.0. Assuming that the convolution product is invert-
ible, Eq.~24b! becomes, once Eq.~23! is taken into account,
a Fourier-like constitutive equation, with memory effects in-
cluded, namely,

J~rW,t !52k~ t !*¹W T* ~rW,t !

52E
2`

`

dt8k~ t2t8;t8!¹W T* ~r ,t8!, ~25!

wherek plays the role of a thermal conductivity given by

k~ t2t8;t8!5Q I~ t2t8;t8!l«~ t8!
M22~ t8!

kBT
2~ t8!

. ~26!

Thus, in this limiting case, one recovers the results of CIT.
Going back to Eq.~19b!, after using Eqs.~24a! and~23!, we
can write

]

]t
«~rW,t !5k~ t !*¹W 2T* ~rW,t !2Q«

21~ t !* «~rW,t !1s«~ t !,

~27!

where the last two term are the contributions accounting for
the exchange of energy with the thermal bath and energy
pumping by the external source. Furthermore, taking the ho-
mogeneous state as stationary, so that all the kinetic coeffi-
cients are constant in time, it follows from Eq.~22b! and the
definition ofb(rW,t) that

]

]t
«~rW,t !.~M22/kBT

2!
]

]t
T* ~rW,t !, ~28!

After substitution of Eq.~28! into Eq. ~27!, taking into ac-
count that in the stationary statej«50 and neglecting the
dissipative termQ«

21
*«, Fourier’s classical heat diffusion

equation, namely,
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F ]

]t
2D¹W 2GT* ~rW,t !50, ~29!

is retrieved, where the heat diffusivity coefficientD is given
by

D5~kBT/M22!k5l«M44/M22, ~30!

with

k5M22Q2 /kBT*
2, ~31!

being the thermal conductivity. It needs to be stressed that
these two kinetic coefficients have a complicate dependence
on the quasitemperatureT* , arising out of the presence ofT*
in the distribution functionsn of Eq. ~B1f! in Appendix B
~we recall thatF251/kBT* !.

Hence, as noticed, we have recovered the results con-
tained in CIT; let us extend them beyond its domain of va-
lidity. Differentiating Eq.~24a! with respect to time we find
that

]2

]t2
«~rW,t !52div

]

]t
JW ~rW,t !2

]

]t
@U«

21~ t !* «~rW,t !#

1
d

dt
j«~ t !, ~32!

and using Eq.~24b! for the time derivative of the flux, we
obtain an equation of evolution for the variable«(rW,t),
namely,

F ]2

]t2
1U21~ t !*

]

]t
2l«~ t !¹W 2G«~rW,t !

52div@U I
21L~ t !* ~¹W 21@¹W ¹W # !#JW ~rW,t !1

d

dt
j«~ t !.

~33!

Equation~32! is a kind of a generalization of the telegraphist
equation with sources, which is of the hyperbolic type in-
stead of the parabolic type obtained in CIT. In Eq.~33! we
have introduced the compound relaxation time

U21~ t !5U«
21~ t !1U I

21~ t !. ~34!

Let us next consider, as before, the case of a stationary
homogeneous state, and so since all kinetic coefficients are
defined as averages over this state, they become constant in
time. Under this condition Eq.~33! becomes

F ]2

]t2
1U21

]

]t
2l«¹W 2G«~rW,t !

5div@k212L~¹W 21@¹W ¹W # !#JW ~rW,t !. ~35!

It should be noticed that by writing Eq.~35! care was taken
of the fact thatdj«/dt50 in the background stationary ho-
mogeneous state of reference. Taking into account the rela-
tion between the energy density and the nonequilibrium tem-
perature as expressed by Eqs.~23!, we obtain an equation of
evolution for the temperature, namely,

F 1cT2 ]2

]t2
1

1

DT

]

]t
2¹W 2GT* ~rW,t !

52div@k212 l 2~¹W 21@¹W ¹W # !#JW ~rW,t !, ~36!

where

DT5l«U5cT
2U; cT

25l« ; l 25~kT2/l«M22!L.
~37!

Equation~36! is an inhomogeneous differential equation
of the telegraphist type, describing damped wave propaga-
tion with velocitycT . The inhomogeneous term, i.e., the one
on the right-hand side, is a term involving sinks or sources,
depending on the rate of change in space of the energy flux.
Equation ~36! is similar to the one derived by Guyer and
Krumhansl@5#, implying the propagation of second sound. It
is also of the form of the equations derived within the con-
text of phenomenological EIT@11#. However, it ought to be
noticed that the last term in Eq.~35! ~containing the Laplac-
ian and the tensorial product of gradients! has here a differ-
ent origin from the one in Ref.@5, 11#. While in the latter it
is a consequence of including the second order flux of the
energy as a basic variable, here it arises out of residual non-
local corrections to the energy flux relaxation time. Hence,
we have shown that the results of CIT and EIT, at least
concerning the problem of heat propagation, are contained as
particular limiting cases of IST. In Sec. V, we summarize
and discuss some consequences arising from Eq.~35!.

V. CONCLUDING REMARKS

We have considered the problem of heat transport in mat-
ter in the context of statistical thermodynamics based on
MaxEnt-NESOM. It has been shown that an exact descrip-
tion in its domain of application would require the use of a
set of infinite moments of the one-particle distribution func-
tion. In the spirit of extended irreversible thermodynamics a
truncation of this set was performed by keeping the density
and energy density and their respective fluxes as relevant
variables. The equations of evolution for these variables are
obtained in terms of the MaxEnt-NESOM generalized non-
linear quantum theory. The resulting transport equations are
nonlinear and nonlocal in space and noninstantaneous in
time as they contain space correlations and memory, but,
because of the truncation procedure, this set of equations is
not closed. To close the system one needs to express the
one-particle distribution in terms of the set of basic variables,
what has been done in Sec. III resorting to a linearized ap-
proximation in Heims-Jaynes perturbation expansion for av-
erages. For simplicity, we have decoupled the movement of
energy from that of matter, that is, we have neglected the
cross-kinetic terms that relate both. Furthermore, taking a
local in space approximation—meaning neglecting spacial
correlations—we have derived the equations of evolution for
the energy density and the energy flux. They are of the type
of Mori’s transport equations, involving terms in the form of
an equation of continuity plus dissipative contributions with
memory. Two time dependent~i.e., depending on the evolv-
ing nonequilibrium state of the system! relaxation times are
introduced: the first,Q« , is associated to energy density
and the secondQI to energy flux. A space and time depen-
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dent nonequilibrium quasitemperature is also defined within
the scope of the theory.

From the coupled set of equations of evolution for the
energy density and the energy flux, we were able to show
that, in the long wavelength limit and for an energy flux
weakly varying in time, the equations of CIT namely, Fou-
rier’s constitutive and diffusion equations, are retrieved@both
containing memory effects#. If such restrictions are removed,
one recovers Guyer-Krumhansl-like equation for the energy
density and for the quasitemperature. Within the limit of
small gradients, the hyperbolic telegrapher’s equation is re-
covered. Therefore, it is proved that, within this restricted
treatment of the general method of the MaxEnt-NESOM, the
system may sustain damped wave propagation of energy~or
equivalently temperature!, which is of the type of second
sound.

Let us next consider the question of the truncation proce-
dure. As already noticed in the paragraph following Eq.~3!,
the closure condition requires, in principle, a description that
needs to incorporate the densities~of matter and of energy!
and their fluxes to all orders. A truncation at a certain order
is necessary, together with a criterion to assert that the infor-
mation retained is the relevant one, and the neglected one is
irrelevant. It is known from phenomenological theories that a
more and more extended set of basic variables needs be in-
troduced when the characteristic lengths become shorter and
shorter. In other words, a more and more reduced set of basic
variables is required as more and more homogeneous the
motion becomes. This can be demonstrated in the case of the
statistical thermodynamics founded on the MaxEnt-NESOM,
to be called information statistical thermodynamics~IST for
short! @21#: If we call IST(r ), or r th level of description of
IST, meaning that are kept as basic variables the densities
and their fluxes up to orderr ~r is also the tensorial rank of
the flux, with r51 being the usual vectorial ones!, one can
define the range of wavelengths going from infinite~Q50! to
a cutoff one (lco

(r )52p/Qco
(r )), for which such a description

becomes a good one to determine thermodynamic and hydro-
dynamic properties of the system under the given conditions.
For r.2 it is, in general, not an easy task to determinelco.
A particular analysis has been done for the case of propaga-
tion of plasma waves in the carrier system of the photoin-
jected plasma in semiconductors@22#. In that paper the dis-
persion relation of plasmons obtained in several levels of IST
was compared with the exact result; it was shown that a
group velocity correct up to second power in wave number
Q follows in IST~4!. Moreover, the cutoff wavelength is
shown to belco

@4#52p/Qco52p c̄tpl , wherec̄ is the average
velocity of propagation of the charge density excitation and
tpl the plasma-wave period. It appears that, as a general rule,
the cutoff frequency is given by an average velocity of
propagation of the excitation multiplied by a characteristic
time @21#. This is shown in the case of the second sound
propagation in the boson systems described in the preceding
section, however restricted to the study of the boundary be-
tween IST~0! and IST~1!, that is to say, at the phenomeno-
logical level between CIT and the original form of EIT. Let
us proceed to define the domain of validity of CIT~in par-
ticular, of Fourier’s diffusion equation! with respect to EIT
~hyperbolic equation for propagation of heat waves!. If in
Eq. ~35! we neglect the right-hand side~i.e., assuming a

weak spacial rate of change of the energy flux!, we can easily
derive the frequency dispersion relation for the second
sound, i.e., the one arising from the secular equation

v2

cT
2 1~ i /DT!v2Q250, ~38!

wherecT~5l«
1/2! may be viewed as the phase velocity. Solv-

ing Eq. ~38! with respect tov and recalling thatU5D T
2/c T

2

@see Eqs.~37!#, it is found that

v~Q!52
i

2U
6S cT2Q22

1

4U2D 1/2, ~39!

which corresponds to wave propagation~second sound! un-
der the conditioncTQ.~2Q!21. Evidently for a givencT and
U this inequality is satisfied for sufficiently large values of
Q, i.e., not too long wave numbers. Consider now very low
frequencies while the thermal diffusivityDT is kept finite. In
this case, it follows from Eq.~38! that the frequencyv is
equal toiD TQ

2, which is the result expected by considering
directly Fourier’s diffusion equation of CIT. This indicates
that CIT may be considered as a good approximation in the
limit of very short frequencies. Furthermore, we see that the
resultv5iD TQ

2 is valid at very long wavelengths. It is then
shown that the system goes from the wave propagation re-
gime of EIT~second sound! to the Fourier’s diffusive regime
of CIT, when passing from condition 2cTQU.1 to
2cTQU,1, that is, when going from the damped to the over-
damped regime in the propagation of the thermal excitation.
It is thus clear that CIT is contained in EIT, and becomes a
good approximation for describing overdamped regimes of
the second sound propagation. As stressed earlier, this cor-
responds to phenomena with predominance of very long
wavelengths and very low frequencies. Therefore, the cutoff
frequency is, in this case, given by

lco
@1#52p/Qco

@1#54pcTU, ~40!

where the velocity of propagationcT and the characteristic
time U depend on the nonequilibrium macroscopic state of
the system, withc T

25l« given by Eq.~D 1a! andU by Eq.
~34!, and the two relaxation times are given by Eqs.~D 1c
and D1d!. As an illustration let us consider the behavior of
longitudinal optical phonons in the case of the photoinjected
plasma in polar semiconductors. The thermal bath consists
then of the fluid of carriers~electrons and holes!, and the
interaction between LO phonons and carriers is via the Fro¨h-
lich potential @23#, and the numerical calculations are per-
formed using parameters characteristic of GaAs. The evalu-
ation of the velocity of propagation@via l« of Eq. ~D1a!# is
easy to perform once we take into account that the LO-
phonon dispersion relation has a small width. It is found that
c T
2 is nearly the average of the square of the LO-phonon

group velocity, in the case of GaAs we find that, roughly,
cT;1.63105 cm/sec. The characteristic timeU becomes
practically the energy relaxation time, since for GaAs
U1@U« , andU« can be calculated to be approximated by
U«'U «

(c)/nvcell , whereU «
(c) is the energy-relaxation time of

carriers resulting from collisions with the LO phonons, given
in Ref. @24#, n is the carrier concentration, andvcell the vol-
ume of the unit cell. In this case the velocity of propagation
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is nearly a constant, independent of the macroscopic state of
the system, but this is not true for the energy-relaxation time.
As an illustration, let us consider that the LO phonons re-
main near equilibrium~say atTb>300 K!, and that the pho-
toexcited carriers, with given densityn51.431017 cm23,
may have quasitemperatures ranging from 300 to 800 K.
Using these results we have represented in Fig. 1 the energy-
relaxation time~right ordinate! in terms of the carrier qua-
sitemperature. We have drawn the line that corresponds to
the cutoff wave numberQco

@1#52p/lco
@1# , which separates the

domain of validity of IST~0! ~or CIT! and IST~1! ~or EIT!. It
is seen that the cutoff value of wavelength is roughly in the
small range 431022 cm<lco

@1#<231022 cm. To determine
the next cutoff wavelengthlco

@2# , an additional and more
elaborate analysis is required. Moreover, it is noticed that
there is a minimum cutoff, and therefore a limiting trunca-
tion, since there is no physical meaning for movements with
wavelengths smaller than the dimension of the unit cell, that
is 2p/lmin5Qmin52QB , whereQB is the radius of the Bril-
louin zone, which, in GaAs is 5.63107 cm21, so that
lmin.5.631028 cm.

The change of regime—from damped to overdamped—is
well evidenced in Raman scattering experiments: damped
second sound propagation gives rise to a Brillouin-like dou-
blet at frequency shifts6@c T

2Q22~2U!22#1/2 and linewidth
~2Q!21, while in the overdamped regime one should observe
a single Rayleigh band with linewidthDTQ

2 and no fre-
quency shift. This is illustrated in Fig. 2.

Summarizing, MaxEnt-NESOM, which provides a very
powerful formalism for the construction of statistical thermo-
dynamic and hydrodynamic theories, is here applied to the
study of a system of bosons in interaction with a second
system acting as a thermal bath. The highly nonlinear, non-
local in space and memory-dependent equations of evolution
for the densities and their fluxes, when under the linear ap-
proximation in the deviations from the homogeneous state
have a structure reminiscent of generalized Mori-Newton-
Langevin equations~however, in a quantum representation!.
By assuming that the reference homogeneous state is time
independent~the simplest case is equilibrium, or, in general,
a nonequilibrium situation but arising out of the application

of a constant source of excitation! we have the full equiva-
lent of Mori’s approach. Neglecting space correlations we
obtain a hyperbolic-type equation of evolution of the teleg-
raphist type, akin to Maxwell-Cattaneo-Vernotte equations
of EIT! which admits two kinds of motion: a predominant
propagating one, namely, a damped wave propagation of
second sound, which, at long wavelengths and low frequen-
cies, goes over to a predominant diffusive movement. The
situation considered here corresponds to the two lowest or-
ders of truncation in the description of the macroscopic non-
equilibrium state of the system. Higher and higher levels of
description~by increasing the number of basic variables! are
necessary when motions involve steeper space and time
variations, thus requiring a Fourier analysis involving shorter
wavelengths and higher frequencies!.
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APPENDIX A: THE COLLISION OPERATORS IN EQ. „7…

The first collision operators in Eq.~7! are

V j
~0!5Tr$@ P̂j ,Ĥ0#r̄~ t,0!%, ~A1a!

V j
~1!5Tr$@ P̂j ,Ĥ8#r̄~ t,0!%, ~A1b!

FIG. 1. The energy-relaxation time~right ordinate! and the line
separating the domains of damped wave propagation and over-
damped regime with diffusive motion for different values of wave-
length ~left ordinate!.

FIG. 2. Contributions to the Raman spectrum by the thermal
excitation in two different cases:~a! a single central~shiftless!
Rayleigh-like band~dashed line! and ~b! a Brillouin-like doublet
~full line!, which correspond to the situations indicated by cross
points labeled correspondingly~a! and ~b! in Fig. 1.
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V j
~2!5S 1i\ D 2E

2`

t

dt8e«~ t82t !Tr$@Ĥ8~ t82t !0 ,~Ĥ8,P̂j !#

3 r̄~ t8,t82t !0%1
1

i\ (
k
E

2`

t

dt8e«~ t82t !Vk
~1!

3
d

dQk~ t8!
Tr$@Ĥ8,P̂j #r̄~ t8,t82t !0%, ~A1c!

etc. Subindex naught indicates evolution of operators in
Heisenberg representation withH0, and d stands for func-
tional derivative; the higher order terms are of ever increas-
ing complexity.

APPENDIX B: COMPLEMENT TO EQ. „15…

The coefficientsaj in Eq. ~15! are

a1~qW ,QW ;t !5@@12exp$D~qW ,QW ;t !#/D~qW ,QW ;t !#n
qW
h
~11n

qW 1QW
h

!,
~B1a!

D~qW ,QW ;t !5F2~ t !\~vqW 1QW 2vqW !1FW 3~ t !•¹W qW~vqW 1QW 2vqW !

1FW 4~ t !•@\vqW 1QW ¹W qWvqW 1QW 2\vqW¹W qWvqW #,

~B1b!

a2~qW ,QW ;t !5
\

2
~vqW 1QW 1vqW !a1~qW ,QW ;t !, ~B1c!

aW 3~qW ,QW ;t !5vW ~qW ,QW !a1~qW ,QW ;t !, ~B1d!

aW 4~qW ,QW ;t !5
\

2
~vqW 1QW 1vqW !vW ~qW ,QW !a1~qW ,QW ;t !,

~B1e!

wherevW is defined in Eq.~11c!, and

n
qW
h
5Tr$bqW

†
bqWrh~ t,0!%5@eyqW 21#

21, ~B1f!

with

yqW5F11F2\vqW1¹W qWvqW~FW 31\vqWFW 4!. ~B1g!

APPENDIX C: COMPONENTS OF MATRIX M̂ IN EQ. „16…

The elements of matrixM̂ in Eq. ~16! in the limit of small
Q are

M11~ t !5(
qW

h~qW ,t !; M12~ t !5M21~ t !5(
qW

\vqWh~qW ,t !;

~C1a!

MW 13~ t !5MW 31~ t !5(
qW

¹W qWvqWh~qW ,t !;

MW 14~ t !5MW 41~ t !5(
qW

\vqW¹W qWvqWh~qW ,t !; ~C1b!

M22~ t !5(
qW

~\vqW !2h~qW ,t !;

MW 23~ t !5MW 32~ t !5MW 14~ t !5MW 41~ t !; ~C1c!

M> 33~ t !5(
qW

@¹W qWvqW¹W qWvqW #h~qW ,t !;

MW 24~ t !5MW 42~ t !5(
qW

~\vqW !¹W qWvqWh~qW ,t !; ~C1d!

M> 34~ t !5MW 43~ t !5(
qW

\vqW@¹W qWvqW¹W qWvqW #h~qW ,t !;

~C1e!

M> 44~ t !5(
qW

~\vqW !2@¹W qWvqW¹W qWvqW #h~qW ,t !; ~C1f!

and where

h~qW !5n
qW
h
~ t !@11n

qW
h
~ t !#. ~C1g!

APPENDIX D:
THE KINETIC COEFFICIENTS IN EQS. „19…

The kinetic coefficients in Eqs.~19! are

l«~ t !5
1

3 (
qW

\vqW~¹W qWvqW !2a2~qW ;t !M22
21~ t !, ~D1a!

L~ t82t;t8!5H~ t2t8!e«~ t82t !
2p

\

3(
qW

ulqW u2M44
21~ t8!

3
1

12
¹W qWvqW•aW 4~qW ;t !GqW~ t82t !, ~D1b!

Q«
21~ t82t;t8!5H~ t2t8!e«~ t82t !

2p

\2

3(
qW

ulqW u2M22
21~ t8!a2~qW ;t !GqW~ t82t !,

~D1c!

Q I
21~ t82t;t8!5H~ t2t8!e«~ t2t8!

2p

\2

3(
qW

ulqW u2M44
21~ t8!\vqW

3
1

3
¹W qWvqW•aW 4~qW ;t8!GqW~ t82t !,

~D1d!
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where

GqW~ t82t !5E
2`

` dv

p
@KqW~v!2JqW~v!#

3exp@ i ~vqW2v!~ t82t !#, ~D1e!

and H(t2t8) is Heaviside’s step function. We recall that

Eqs.~19! correspond toQW Þ0. The equations for the homo-
geneous state~Q50! are Eqs.~8a! and ~8b! where popula-
tionsnqW are given by Eq.~9b!, since the linear contributions
in the inhomogeneous variables—which are obtained using
the linearized Heims-Jaynes expansion—vanish.
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