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Heat transport in a boson system: An information-theoretical approach
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Resorting to what is termed informational statistical thermodynamics, namely, the microscopic foundations
of irreversible thermodynamics in terms of the nonequilibrium informational ensemble, the problem of heat
transport in a system of bosons is considered. In a truncated description of the macroscopic state of the system
we derive the equations of evolution appropriate for an extended hydrodynamiclike approach. We particularize
the analysis to those macrovariables corresponding to energy density and energy flux whose equations of
evolution are nonlinear generalizations of Mori-Langevin equations. We arrive at an equation of propagation of
thermal waves with damping. The thermal excitations are of the type of second sound. The different transport
coefficients(like velocity of propagation, thermal diffusivity, relaxation times, eteceive an interpretation at
the microscopic mechano-statistical level. We derive the limiting conditions to be imposed to recover Fourier’s
theory as an approximatiopS1063-651X96)07311-4

PACS numbgs): 05.70.Ln, 82.20.Db, 82.20.Mj

I. INTRODUCTION ture propagation in a system of bosons in terms of a
mechano-statistical formalism, namely, the nonequilibrium
The analysis of heat propagation is one of the centrabtatistical operator method which is based on the
motivations in irreversible thermodynamics. A thorough andinformation-theoretical approach of maximization of infor-
deep description of results in this area, is due to Joseph arfational entropy(MaxEnt-NESOM for shoit[12,13, and
Preziosi[1]. In classical irreversible thermodynamitgIT) ~ Zubarev's approachl4]. The MaxEnt-NESOM provides a
[2], based on the local equilibrium assumption, the theory oftonlinear quantum transport theory of a large scidfg—a
heat propagation resorts to Fourier's constitutive equatiofi@’-reaching generalization of Mori's approach. In this
which leads to a parabolic equation of diffusion. This impliestheory, the transport coefficients, which are open parameters
that the thermal signals propagate at infinite speed at largé Phenomenological thermodynamic theories, are inter-
frequencies, and further there is no agreement with experireted at the microscopic level. That is, they are given in
mental evidence in the short wavelength and/or high freterms of the underlying dynamical theory averaged with an
quency domains as well as for large Mach numbers. To over@Ppropriate MaxEnt-NESOM statistical distribution that
come these difficulties there exist several attempts to g&haracterizes the nonequilibrium macroscopic state of the
beyond CIT in terms of phenomenological thermodynamicSystem, and allows to incorporate spatial correlatioren-
theories like extended irreversible thermodynami&T)  locality in spacg and time correlationémemory effects
[3,4]. In EIT, Fourier's diffusion equation is generally re-
placed by a hyperbolic equation, of the telegraphist type,
corresponding to wave propagation with damping. In a dif-
ferent approach, based on Boltzmann’s equation for the pure
phonon field, Guyer and Krumhan$b] considered heat Consider a system consisting of a fluid of bosons, for
transport in dielectric crystals at low temperature and arriveexample, the different branches of phonons in a solid state
at the conclusion that second sound may appear in somsample. The fluid is assumed to be in interaction with a ther-
temperature range. The phenomenon of second sound wasal bath which is taken to be at a constant temperalygre
considered in the early works of Tisg8] and Landau7] in The system of bosons is taken to be initially in an homoge-
the case of helium II, and experimentally verified by Peschneous state of reference and subsequently subjected to the
kov [8]. But second sound can be sustained in phononlikgresence of gradients of the different quantities that charac-
fluids in general9], as well as in a system of electron car- terize its macroscopic state. Lef; be the frequency disper-
riers[10]. sion relation of these bosons, with wave vecfprunning
A rederivation of the Guyer-Krumhansl| equation for heatover an appropriate zone in reciprocal spétke Brillouin
transport in dielectrics in the framework of EIT, along with a zone in the case of crystalsWe write for the total Hamil-
variational formulation, is given in Ref11]. In the present tonian
paper, we consider the general case of energy and tempera-

Il. THE SYSTEM AND THE CHOICE
OF THE BASIC VARIABLES

H=Ho+H’, 1)
*Also at Universitede Louvain, B-1348 Louvain-la-Neuve, Bel-
gium. where
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- N LA A s these quantities are viewed as basic variables. A truncation
Ho= 2 hwg(bghg+z)+He=Hp+Hg, (28 procedure is required, and we take the basic set of dynamical
4 variables composed of

> > 5

H' =3 (hgoabl+ % olba)+Fiy. (2b) {N:F:Pi1iAQ):R(Q):p(Q):1(Q)iHgl,  (4a)
‘ guantities given by

In Eq. (28 the first term is the Hamiltonian of the free R
bosons, andHg that of the thermal bath. Equatid@b) rep- n(Q)=
resents the interaction between both subsystemsHanid q
the contribution to the Hamiltonian associated to interactions
with external pumping sources. In these equatiofts’) are
annihilation(creatior) operators of bosons in the system con-
sidered ¢(¢") are annihilatior(creation operators of excita-

|

ViQ:

- h .
8Q)=2 5 (wg.qtwg)vag:
q

tions associated to the thermal bath, ané the coupling . 1.
strength with the upper asterisk denoting complex conjugate. p(Q)= E > Vi(wgig— wg) ?/dé;
It is worth noticing that the separation of the Hamiltonian as q

given by Eq.(1) is an important prerequisite in MaxEnt-
NESOM. The method proceeds as follows, a first step is to
provide a characterization of the macroscopic state of the
system in terms of an appropriate set of macrovariables. This

is based on the closure condition provided by the so-callegith
Zubarev-Peletminskii symmetry propefti2—14,18. This is

done in a step by step procedure. First, the total Hamiltonian -2=p. -bg
is separated into two parts—as done in Eh—whereH,
(called the relevant or secular pais composed of the ki- A A 3 2 .

netic energies of the subsystems and, eventually, some of ti&1d the quantitiesl, Hy,, P, andl correspond to s&@=0 in
interactions, namely those strong enough to have associatdle edquations above. Moreover, the accompanying set of
very short relaxation timegmeaning those much smaller heérmodynamic macrovariables is indicated by

than the characteristic time scale in the experimefhe - - - - ..o

other H' contains the interactions related to the long-time {N(t);E(t);P(t);1(t);n(Q,t);h(Q,t);5(Q,t);1(Q,t);Eg},
relaxation mechanisms. Zubarev-Peletminskii closure condi- (4b)

tion (which at the mechano-statistical level is the counterpart - . o

of the principle of equipresence in phenomenological therWhere, we recallQ#0 and the truncation process is dis-
modynamicq 17]), states that, givehi, and the set of basic Ccussed in Sec. V. The set of Eqg) is a combination of

variables, sayP; , the commutator oP; andH must verify hqmogeneous and inhomogeneous guantities. All these quan-
that tities are expressed per unit volume.

With the choice of Eqs(4) the auxiliary coarse-grained
MaxEnt-NESOM statistical operat¢t 2] is given by

- # > -
Q=2 7 (wg1g+ w9 Vi(wg: g @g) Yio;
q

['Sj aﬁo]:; ajklskv 3 ) o -
Ht,O)zexp{ — (1) —F1()N—F(t)Hp—F3(t)- P

where, in an appropriate representation, &' arec num-

bers determined b¥ . - 2 . N
In the present description we select as an initial —Fa(t)-1o— 2 [f1(QHAQ)+2(Q,Hh(Q)

set of variables the density and energy density of the boson Q0

system, together with the energy of the thermal bath. More e~ LA R

precisely, for convenience in the calculations we take their +f3(Q,1) - p(Q)+f4(Q,1)-1(Q)]— BoHg!, (5

Fourier amplitudes of wave vector@, namely,

IN(),E(1),n(Q,1),h(Q,1),Eg}, whereN andE are the ho- \yare 4 ensures the normalization pf (it plays the role of

mogeneous value)=0), n ande the inhomogeneousY  the logarithm of a nonequilibrium partition functignthe
#0) contributions, andg is the energy of the thermal bath. eightF; andf; are MaxEnt-Lagrange multipliergelated to
These are the macrovariables; the corresponding dynamictiie intensive variables of nonequilibrium thermodynamics
quantities are indicated by, Hy,,7(Q),&(Q),Hg, with Hg and By=1/kgT,. The MaxEnt-NESOM fine-grained statisti-
andH,,, defined in Eq(24). Application of the closure con- €@l operator is a functional of the coarse-grained one of Eq.
dition of Eq. (3) requires the introduction as basic variables (%), Which in the case of Zubarev's approach is giveri b4}

of the vectorial fluxes of particleﬁ(@), and of energy, de-

_ t d __
s L(t)=exp In p(t,0 —f dt’es® =0 — Inp(t',t' 1),
noted byl(Q), as well as all the higher orddtensoria) pe(l) p{ p(t.0) —w dt l )
fluxes of particles and energy. According to the procedure all (6)
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where the infinitesimal positive, which ensures the irrevers- We have also introduced the spectral representatibasd
ible evolution of the system, goes to zero after the calculaXC for the average values of the excitations of the thermal
tion of averages has been performed. Furthermore, the firtath, namely,
variable in the argument gf refers to the time dependence
of the Lagrange multipliers, while the second corresponds to T = do (or
the time dependence of the dynamical variables in Heisen- <‘Pd(7)9°d>: f_w T JTi(w)e®T, (99)
berg representation.

Having defined the macroscopic state of the system we © do
next look for its evolution under the action of thermal per- <9°5|( T)9°<Ti>:f i ,Cd(w)eim_ (9d)
turbations resulting from an inhomogeneous state of initial —e T

preparation. . .
Finally, Sg(t) and Sp(t) in Egs.(8b) and (8¢) stand for the

contributions due to the pumping source, whose origin is in
the interaction energy operatbr; of Eq. (2b). For simplic-
Here we derive the equations of evolution for the basidty, we assume that the pumping source couples to the sys-
variables resorting to the MaxEnt-NESOM generalized nontem in such a way to increase the homogeneous part of the
linear guantum transport theorjl5]. According to this energy and momentum, but does not affect the flux of energy
theory, the Liouville equation for the statistical operator canand the inhomogeneous variables. A continuous constant
be transformed into an integral equation, which admits arpumping would produce a stationary homogeneous state af-
iterative solution. A detailed description can be found inter a transient time has elapsed; this condition will be used
[16]. For the present purposes it suffices to mention that théater on.
evolution equations for the basic variables can be written in  The equations of evolution for the inhomogene@@s#0)
terms of an infinite series_of contributions to the collision variables are
operator. If we calQ; and P; the basic variables and asso-
ciated dynamical quantities, respectively, we have fh&t

Ill. THE EQUATIONS OF EVOLUTION

a L. -
FMQY=IQ-pQ.H+X IG.Q), (109
q

d o0
— Q=2 ™), (7)
dt m=0 J - L s > ) Lo
T hQRD=IQTQD+2 5 (wgig+wxd.QL),
where the right-hand side is composed of an infinite series of 4 (10b)
partial collision operators, as described in Appendix A.
In what follows we stop the iterative process at the second
order (that is we takem=0; 1; and 2 which implies two- —p(Q,1)=i0-0(Q,1)+ > 7(4,0)(3G,Q;1),
particle collisions but includes nonlocality in space and ot q
memory effectsto find, first for the homogeneous variables, (100
that
TG00 4G+ L (wgg+wo)
d 27 . Z HQD=IR-HQUF 2 5 (0G4t w4
N =77 2 [\ 2AGD), (8a n 7 2
dt he 5
Xv(6,Q)3(q,Q;t), (100
d 2m ) .
GtEMD=77 2 N*hogA@n+Se(t), (8D  where
q
2 ™ ! (=05 4|2
d . 27 - A J(ﬁ,Q;t)=—zH dt’e”™ VIng| [ Tg(w)
o P(t)=?2q INg|2VawgA(G,) +Sp(t), (89 U 4
—Kg(w)]lexpli(wg—w)(t'—1)}
- 2 ) > R .
gi V=72 Eq Ngl*hwgVogA(G, (8D +same with exchangg— G+ Q| vg5(t)),
where (113

.  de [t . ¢ and ¢ are the flux of the flux of matter and of energy,
A(q,t)=J7 - J7 dt’ exp{[e+i(wg— ) ](t'—1)}

vga(t) =Tr{b], 5bap(t,0)}, (11b
X[ Tg(@)[vg(t") +1]— Kg(w) vg(t")], (99
and
with, we recall,e going to zero, and
e - 1.
va(t)=Tr{blban(t,0)}, (9b) 0(6,Q)=Vgog+ 5 QVgog+ - (119
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an expression that arises fr0@l-ﬁ=(wd+é—wd)/2, when n(é,t) fl(@,t)
expanded in increasing powers Qf h(Q,t) ~ o |00
We recall that we have assumed that the external sources act - o =-M(Q,t)| - = . (16
only on the homogeneous variables, not being a supplier to E’(?'t) ‘:3(?'”
the inhomogeneous variables. Hence, the terms involying 1(Q,T) f4(Q,1)

in Egs. (10) are exclusively of the kind of relaxation-
dissipative contributions as a result of the coupling with thegor simplicity we take the limit of smalQ’s, and this as-
thermal bath. sumption allows us to negle€t in all the kinetic coefficients

At this point we clearly see that, as a consequence of thg, andm:  this is equivalent to take in Eq&L0), which are
truncation procedure in the choice of the basic variables, thgonp|ocal in space and memory dependent, a local in space
equations of evolution do not constitute a closed set. Hencgypproximation, meaning that spatial correlations are ne-

the next step is to express the variables corresponding 1o thgiected. In this limit matrixV simplifies considerably and its
higher order fluxesp and ¢ in terms of the basic variables. glements are listed in Appendix C.

Taking into account the expressions for these higher order after inversion of matrixM we can, from Eq(16), obtain
fluxes and also th.e expressiqns for the qollision operqgrs e Lagrange multipliers in terms of the inhomogeneous
Eq. (109] appearing in the right-hand side of Eq$0), we  yariables, and next replacing in E€L5) these expressions
need to expressq(t) of Eq. (11D in terms of the basic  for thef; yields vgg in terms of the basic variables. We omit
variables. For that purpose we first separate the homoggne |engthy and cumbersome resulting expressions and limit
neous and inhomogeneous contributions in the auxiliary stagyr present analysis to specific calculations for a simplified

tistical operator of Eq(5), namely, situation in Sec. IV. The relevant point to be kept in mind
. here is that we have derived a closed set of equations of
p(t,00=exp[A+B}/Tr{exd A+ B}, (12 evolution for the selected basic variables of E4p), with

the kinetic coefficients given at the microscopic level, that is
whereB refers to the inhomogeneous contribution, that is, in terms of the dynamics of the constituent particles.
The set of equations of evolution describe transport of
_ R I, matter and of energy and, as we have seen, both phenomena
B=— 2 {f1(Q,1HN(Q)+f,(Q,t)h(Q) +f53(Q,1)-p(Q) are coupled together through cross-kinetic terms. In what
Q#0 follows we concentrate our attention on the thermal motion
I, alone, decoupling it from the material motion, that is we
+14(Q,1) - 1(Q)}, (13 neglect cross-kinetic terms. As a consequence we have only
to consider the equations for the energy density and its flux.
while A contains the homogeneous contributions. We intro-
duqe also the statistical operator for the homogeneous state, IV. SECOND SOUND IN IST
defined by
Within the above assumptions, namely, decoupling of ma-
— ~ ~ o < terial and heat motion, and omission of spatial correlations,
Pn(t,0)=exp{— ¢n(t) = FL()N—F2(t)H,—F5(t)-p but keeping memory effects contained in tﬁe collision opera-
T A tor Q@ (all other higher order collision operators are ne-
—F4(t)- 1= BoHg}, (14 glected we are left with relatively simple equations for the
energy density and its flux. First we note that under the con-
with ¢, ensuring its normalization. ditions just stated it follows that
Resorting to Heims-Jaynes perturbation expansion for av-

erageq 18], we find at first orderlinear approximationin veg(t)= Mz’zl(t)az((j;t)h((ﬁ,t)JrM;41(t)§4(ﬁ;t)~ f((ﬁ,t),

the inhomogeneities contained in operaByrthat (17)
vio(H=2a1(6,Q;)f1(Q,1) +ax(d,Q; ) f2(Q,1) wherea,(d;t) anda,(d;t) stand fora, andd, of Appendix
e a2z e oz 2 B with on. If in addition we assume isotropy the tensor
+83(4,Qi1) - F3(Q,1) +a4(4, Q1) - T4(Q, 1), M ,, becomes a scalar times the unitehsor, given by
(15

Zp(d,1)1, (18

1 T

where the coefficienta;(,Q;t) are listed in Appendix B. M) = 3 Zq (hwg)*Vqwg

After replacingvyg given by Eq.(15) in the expressions
for ¢, ¢, andJ of Egs.(10), the right-hand sides in Eq€L0)
become dependent on the four Lagrangian multipligrs ,,

fs, and f4. But to close the system of equations, we can
relate these Lagrange multipliers to the basic variables since
the latter, are linear combinations ofg. We are then left 5
with a system of equations that can be written in the matri- 2 R TA - 2
s a S NQD=IQ-1(QH-6, t)*h(Qt), (19

with 7 defined in Eq(C1.9 and sincawg is an even function

of § it follows that M,,=M 4,=0.
Replacing Eq(17) into Eqgs.(10b) and(10d) we find that
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J - o - s 5 o J - > -
= H(Q,)=\,(DIQh(Q,1) =B ()*1(Q,) S ALY = A (DVe(F,1) =0 () J(F')
—A*(Q*+[QANIQ.), (19 —AO*(VH[VVDATH +E(D),
where* stands for the convolutionlike product defined by (24b)

@;1(t)*h((§,t)=f dt’@;l(t—t’;t’)h(é,t’), (20) \Ll/heres(r,t) and J(r,t) (which iire the a:/erages efand
- J) have the Fourier transformgQ,t) and J(Q,t), while &,

and so on; the presence of such terms clearly shows thglndf, account for the action of the external pumping source.

memory effects are incorporated in the theory. Furthermore Eguat!ons(24)_ are local in space as a result .Of the ap-
in Egs.(19) the time dependent kinetic coefficients, namely,mox'rnatlon we introduced consisting in negIeEtlng the de-
., A, ©,, and®, are given in Appendix D. pendence onQ of the kinetic coefficientsa;(Q,t) and

Furthermore, if we introduce the quanti(Q,t) such M(Q,t). Moreover, Eqs(24) are, within the approximations

_ 2N A 2 we have introduced, of the type of Mori’s equations
Eha;[ 01 Fz(f) and ’B(Q’t)A IZ(Q’t)l for Qjﬁo’ and [20]: the first term on the right-hand side is in Mori's ter-
e(Q) such thate(0)=H,, andh(Q)=¢(Q), for Q#0, we  inglogy a precession term, while the secéadcompassing

can write in the exponent of the statistical operator of &Y.  (etroeffects or memoyis a relaxation term wher®, and®,

that play the role of relaxation times which, we recall, depend on
R R the time evolution of the homogeneous state of reference.
Fo(Hp+ > £(Q,H)h(Q)=>, B(Q,H)(Q). Let us return to Eq(19b), wherein the last term is ne-

Q+0 0 glected (A=0) and take a quasistationary flux, namely,

(218 5 719t=0. Assuming that the convolution product is invert-
o ] L o - ible, Eq.(24b) becomes, once E§23) is taken into account,
Similarly, introducing @(Q,t) such thata(Q,t)=f4(Q,t)  a Fourier-like constitutive equation, with memory effects in-

for 3#0, and%(Q) such that(0)=1 and. Q) =1(3) for  cluded, namely,

Q+#0, we can write . -
T t)=—k(t)*VT*(F,t)

F4(t)l+b§of4(Q,t)l(Q)=ZQ &(Q,t)J(Q,t)-( | :_f:dt,K(t_t,;t,)ﬁ*(r,t,), (25
21b)

In the context of informational statistical thermodynamicsWherex plays the role of a thermal conductivity given by

the Lagrange muItipIier,B(Qt) can be interpreted as the M (1)

Fourier transform of the reciprocal of a local nonequilibrium k(t—t";1)=0,(t—t";t )N (1)) % (26)
temperature(to be referred to as a quasitemperature kgT=(t")

namely, B(f,t)=1/kgT(F,t) [19]. We can also write S

T*(F,t)=T*(t)+ AT*(f,t), whereT* is the average homo- Thus, in this limiting case, one recovers the results of CIT.
geneous nonequilibrium temperature ah@* its local de-  Going back to Eq(19b), after using Egs24a and(23), we
viation; in the linearized (local) theory one has that Can write

AT*<T*. On the other hand,

% ()= k(D)* V2T*(F,1)— O, L(t)* &(F,t) + 0, (1),
(27)

where the last two term are the contributions accounting for
the exchange of energy with the thermal bath and energy
pumping by the external source. Furthermore, taking the ho-
mogeneous state as stationary, so that all the kinetic coeffi-
R R Moo(t) - cients are constant in time, it follows from E@2b) and the
Ve(r,t)=—Mxu(t)VB(F,t)= FT*)Z VT(r,t). (23  definition of B(f,t) that

(t

h(Q,t)=—M(t)f(Q,t), (229

[(Q,)=—Mayu(Df4Q,1), (22b)

for Q#0, as a result of Eq(16) and isotropy, and making
use of the fact thaAT* <T*, we can write

We are now in condition to transform back the equations i >4\ 2 i * (7
of evolution, Egs(8b), (8d), (10b), and(10c¢), to obtain them #(M)=(M2/kgT") at T, (28)
in direct space, where they read as
After substitution of Eq(28) into Eq. (27), taking into ac-
count that in the stationary state=0 and neglecting the
dissipative term®; x¢, Fourier's classical heat diffusion
(248  equation, namely,

% e(F)=—div T(F0) — O L) e(F.0)+ £,(1),
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S DV2[TH(F.)=0 29 RS

E (r,t)=0, (29 2wt o (r,t)
is retrieved, where the heat diffusivity coefficiebtis given = —div[k 1= IXV2+[VV])]ATL), (36)
by

where
D:(kBT/Mzz)K:)\SM44/M22, (30)
Dr=\,0=c30; c2=\,; 12=(kT?/\,M)A.

with (37

k=M 0, /KgT*?, (31 Equation(36) is an inhomogeneous differential equation

of the telegraphist type, describing damped wave propaga-
being the thermal conductivity. It needs to be stressed thaion with velocity c. The inhomogeneous term, i.e., the one
these two kinetic coefficients have a complicate dependencsn the right-hand side, is a term involving sinks or sources,
on the quasitemperatufié’, arising out of the presence ®f  depending on the rate of change in space of the energy flux.
in the distribution functionss of Eq. (B1f) in Appendix B Equation(36) is similar to the one derived by Guyer and
(we recall thatF,=1/kgT™). Krumhansl[5], implying the propagation of second sound. It
Hence, as noticed, we have recovered the results cornis also of the form of the equations derived within the con-
tained in CIT; let us extend them beyond its domain of va-text of phenomenological EIT11]. However, it ought to be
lidity. Differentiating Eq.(24a with respect to time we find noticed that the last term in E¢5) (containing the Laplac-
that ian and the tensorial product of gradientss here a differ-
ent origin from the one in Ref5, 11]. While in the latter it
is a consequence of including the second order flux of the
energy as a basic variable, here it arises out of residual non-
local corrections to the energy flux relaxation time. Hence,
+£ £.(1) (32) we have shown that the results of CIT and EIT, at least
dt > concerning the problem of heat propagation, are contained as
particular limiting cases of IST. In Sec. V, we summarize
and USing Eq(24b) for the time derivative of the ﬂUX, we and discuss some consequences arising fron'(El_

obtain an equation of evolution for the variabigr,t),
namely, V. CONCLUDING REMARKS

2

O O o\ (T2 s(F
0—,t2 () (9t s() 8(r1)

? 0 - a "
Sz e(fy=—div - J(r,t)— — [0, (O)*e(F,1)]

We have considered the problem of heat transport in mat-
ter in the context of statistical thermodynamics based on
q MaxEnt-NESOM. It has been shown that an exact descrip-

o 1 > R N tion in its domain of application would require the use of a
= —dVO AWM (VAHIVVDIARY + dt &(1). set of infinite moments of the one-particle distribution func-
33 tion. In the spirit of extended irreversible thermodynamics a
(33 truncation of this set was performed by keeping the density
Equation(32) is a kind of a generalization of the telegraphist @"d €nergy density and their respective fluxes as relevant
equation with sources, which is of the hyperbolic type in_varle}bles._ The equations of evolution for these va(lables are
obtained in terms of the MaxEnt-NESOM generalized non-
linear quantum theory. The resulting transport equations are
nonlinear and nonlocal in space and noninstantaneous in
0 Yt=0_1t)+6,1). (34) time as they contain space correlations and memory, but,
because of the truncation procedure, this set of equations is

Let us next consider, as before, the case of a stationarjot closed. To close the system one needs to express the
homogeneous state, and so since all kinetic coefficients a@ne-particle distribution in terms of the set of basic variables,
defined as averages over this state, they become constantwhat has been done in Sec. Il resorting to a linearized ap-
time. Under this condition E¢33) becomes proximation in Heims-Jaynes perturbation expansion for av-

erages. For simplicity, we have decoupled the movement of

9? 4 N energy from that of matter, that is, we have neglected the

W”Le ﬁ_)‘sv e(f,) cross-kinetic terms that relate both. Furthermore, taking a
local in space approximation—meaning neglecting spacial

—div[x 1= A(V2+[VV])]AT,t). (35  correlations—we have derived the equations of evolution for

the energy density and the energy flux. They are of the type
It should be noticed that by writing E¢35) care was taken of Mori’'s transport equations, involving terms in the form of
of the fact thatd¢,./dt=0 in the background stationary ho- an equation of continuity plus dissipative contributions with
mogeneous state of reference. Taking into account the relamemory. Two time dependefite., depending on the evolv-
tion between the energy density and the nonequilibrium teming nonequilibrium state of the systemelaxation times are
perature as expressed by E(&3), we obtain an equation of introduced: the first®,, is associated to energy density
evolution for the temperature, namely, and the secon@®, to energy flux. A space and time depen-

stead of the parabolic type obtained in CIT. In E83) we
have introduced the compound relaxation time
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dent nonequilibrium quasitemperature is also defined withirweak spacial rate of change of the energy fluve can easily

the scope of the theory. derive the frequency dispersion relation for the second
From the coupled set of equations of evolution for thesound, i.e., the one arising from the secular equation

energy density and the energy flux, we were able to show 2

that, in the _Iong Wavelength Iimi.t and for an energy flux w—2+(i/DT)w—Q2=O, (39)

weakly varying in time, the equations of CIT namely, Fou- Cr

rier's constitutive and diffusion equations, are retrie{fedth h _\12) be viewed as the ph locity. Sol
containing memory effecislf such restrictions are removed, w erecy(=A;") may be viewed as the phase velocity. Solv-

one recovers Guyer-Krumhansl-like equation for the energI 9 Eq.(38) W'th respect taw and recalling tha=D 7/c7
density and for the quasitemperature. Within the limit of see Eqs(37)], it is found that

small gradients, the hyperbolic telegrapher’s equation is re- i
covered. Therefore, it is proved that, within this restricted w(Q)=—z==
treatment of the general method of the MaxEnt-NESOM, the 20

system may sustain damped wave propagation of enermy \yhich corresponds to wave propagati@econd souridun-
equivalently temperatuye which is of the type of second der the conditiorcTQ>(2®)_1. Evidently for a givercy and
sound. ) . . O this inequality is satisfied for sufficiently large values of
Let us next consider the question of the truncation Proceq je., not too long wave numbers. Consider now very low
dure. As already noticed in the paragraph following B}, fraquencies while the thermal diffusivig, is kept finite. In
the closure condition requires, in principle, a description thafis" case it follows from Eq(38) that the frequency is

needs to incorporate the densities matter and of en_ergy equal toiDQ?, which is the result expected by considering
and their fluxes to all orders. A truncation at a certain Orderdirectly Fourier's diffusion equation of CIT. This indicates

is necessary, together with a criterion to assert that the inforthat CIT may be considered as a good approximation in the
mation retained is the relevant one, and the neglected one |8, of very short frequencies. Furthermore, we see that the
irrelevant. It is known from phenomenological theories that aresulthiDTQz is valid at very long wavelengths. It is then

more and more extended set of basic variables needs be i8rqwn that the system goes from the wave propagation re-
troduced when the characteristic lengths become shorter a me of EIT (second soundo the Fourier's diffusive regime
shorter. In other words, a more and more reduced set of basjs 11 when passing from condition c2Q0>1 to

variables is required as more and more homogeneous thﬁ:TQ6<1, that is, when going from the damped to the over-

motion becomes. This can be demonstrated in the case of the, e regime in the propagation of the thermal excitation.
statistical thermodynamics founded on the MaxEnt-NESOMy; i5 thys clear that CIT is contained in EIT, and becomes a

to be called information statistical thermodynam{tST for ood approximation for describina overdamped reaimes of
shord [21]: If we call IST(r), or rth level of description of g PP g P g

. ) s .. the second sound propagation. As stressed earlier, this cor-
IST, meaning that are kept as basic varlables'the den&ﬂq@smnds to phenomena with predominance of very long

and their fluxes up to order (r is also the tensorial rank of \4yelengths and very low frequencies. Therefore, the cutoff

the flux, withr =1 being the usual vectorial one®ne can

define the range of wavelengths going from infir{ifg=0) to frequency is, in this case, given by

a cutoff one §Y=27/QM)y, for which such a description A= 27/QU= 47¢.0, (40)
becomes a good one to determine thermodynamic and hydro-

dynamic properties of the system under the given conditionswhere the velocity of propagatioty and the characteristic
Forr>2 itis, in general, not an easy task to determing.  time © depend on the nonequilibrium macroscopic state of
A particular analysis has been done for the case of propagahe system, wittc 2=\, given by Eq.(D 18 and© by Eq.
tion of plasma waves in the carrier system of the photoin{34), and the two relaxation times are given by E¢3.1c
jected plasma in semiconductdi2?]. In that paper the dis- and D1d. As an illustration let us consider the behavior of
persion relation of plasmons obtained in several levels of ISTongitudinal optical phonons in the case of the photoinjected
was compared with the exact result; it was shown that glasma in polar semiconductors. The thermal bath consists
group velocity correct up to second power in wave numbethen of the fluid of carriergelectrons and hol¢sand the

Q follows in IST(4). Moreover, the cutoff wavelength is interaction between LO phonons and carriers is via thé+ro
shown to be)\E‘g:Zw/QCO:ch_Tm, wherec is the average lich potential[23], and the numerical calculations are per-
velocity of propagation of the charge density excitation andormed using parameters characteristic of GaAs. The evalu-
7, the plasma-wave period. It appears that, as a general rulation of the velocity of propagatiofvia A, of Eq. (D1a)] is

the cutoff frequency is given by an average velocity ofeasy to perform once we take into account that the LO-
propagation of the excitation multiplied by a characteristicphonon dispersion relation has a small width. It is found that
time [21]. This is shown in the case of the second souncc? is nearly the average of the square of the LO-phonon
propagation in the boson systems described in the precedirgroup velocity, in the case of GaAs we find that, roughly,
section, however restricted to the study of the boundary bes;~1.6x10° cm/sec. The characteristic tim® becomes
tween I1ST0) and IST1), that is to say, at the phenomeno- practically the energy relaxation time, since for GaAs
logical level between CIT and the original form of EIT. Let ©,>0,_, and O, can be calculated to be approximated by
us proceed to define the domain of validity of Clifi par-  ©,~0 9/nv ., whereO® (%) is the energy-relaxation time of
ticular, of Fourier’s diffusion equatignwith respect to EIT carriers resulting from collisions with the LO phonons, given
(hyperbolic equation for propagation of heat wavds in in Ref.[24], n is the carrier concentration, and,, the vol-

Eqg. (35 we neglect the right-hand sid@.e., assuming a ume of the unit cell. In this case the velocity of propagation

1 1/2
ctQ%— — (39
T 462)
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FIG. 1. The energy-relaxation tin{eight ordinate¢ and the line

separating the domains of damped wave propagation and over- F|G. 2. Contributions to the Raman spectrum by the thermal
damped regime with diffusive motion for different values of wave- excitation in two different casesa) a single central(shiftless
length (left ordinate. Rayleigh-like band(dashed ling and (b) a Brillouin-like doublet

(full line), which correspond to the situations indicated by cross
is nearly a constant, independent of the macroscopic state pbints labeled corresponding(g@) and(b) in Fig. 1.
the system, but this is not true for the energy-relaxation time.
As an illustration, let us consider that the LO phonons re

main near equilibriunsay atT,=300 K), and that the pho- lent of Mori's approach. Neglecting space correlations we

toexcited carriers, with given density=1.4x10'" cm °, obtain a hyperbolic-type equation of evolution of the teleg-

may have quasitemperatures ranging from 300 to 800 K, " ) .
Using these results we have represented in Fig. 1 the energ aphist typ_e, akin _to MaxvyeII-Cattango—Vernotte equ_auons
f EIT) which admits two kinds of motion: a predominant

relaxation time(right ordinate in terms of the carrier qua- i ,

sitemperature. We have drawn the line that corresponds tfoPadating one, namely, a damped wave propagation of

the cutoff wave numbeQE%]:Zw/AE})], which separates the s_econd sound, which, at Iong_ Wavelt_sngt_hs and low frequen-

domain of validity of IST0) (or CIT) and IST1) (or EIT). It cies, goes over to a predominant diffusive movement. The

is seen that the cutoff value of wavelength is roughly in theSituation considered here corresponds to the two lowest or-

small range %10 2 em=\1<2%10°2 cm. To determine ders of truncation in the description of the macroscopic non-
SVES )

the next cutoff wavelength\[2, an additional and more equilibrigm state of thg system. Higher and'highgr levels of
elaborate analysis is required. Moreover, it is noticed thafl€Scription(by increasing the number of basic variablase
there is a minimum cutoff, and therefore a limiting trunca- "€CeSsary when motions involve steeper space and time
tion, since there is no physical meaning for movements withyariations, thus requiring a Founerl analysis involving shorter
wavelengths smaller than the dimension of the unit cell, thafv@velengths and higher frequengies

iS 27\ in=Qmin=2Qg , WhereQg is the radius of the Bril-

louin zone, which, in GaAs is 5%610" cm !, so that

Ain=5.6x10"8 cm. ACKNOWLEDGMENTS

The change of regime—from damped to overdamped—is
well evidenced in Raman scattering experiments: dampegu
second sound propagation gives rise to a Brillouin-like dou
blet at frequency shiftst[c2Q?—(20) 2]¥? and linewidth
(20)7%, while in the overdamped regime one should observ
a single Rayleigh band with linewidtB;Q? and no fre-
quency shift. This is illustrated in Fig. 2.

Summarizing, MaxEnt-NESOM, which provides a very
powerful formalism for the construction of statistical thermo-
dynamic and hydrodynamic theories, is here applied to the
study of a system of bosons in interaction with a second
system acting as a thermal bath. The highly nonlinear, nonAPPENDIX A: THE COLLISION OPERATORS IN EQ.  (7)
local in space and memory-dependent equations of evolution The first collision operators in Eq7) are
for the densities and their fluxes, when under the linear ap-
proximation in the deviations from the homogeneous state
have a structure reminiscent of generalized Mori-Newton-
Langevin equationghowever, in a quantum representajion
By assuming that the reference homogeneous state is time
independentthe simplest case is equilibrium, or, in general, D A A
a nonequilibrium situation but arising out of the application Q7 =Tr{[P;,H']p(t,0)}, (Alb)

‘of a constant source of excitatiopwe have the full equiva-
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O =Tr{[P; Holp(t,0)}, (Ala)
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1\2 [t ) - A . . R
ﬂ}2>=(@) f dt’e” " OTH[H'(t' =t)o,(H',P))] Migt)=May(t) =2, Vawgn(d.t);
- q
_ 1 , - R . )
Xp(t’,t’—t)o}-i-mzk‘, Jimdt’e‘a(t ol M14(t):M41(t):zq fiwgVqwgn(q,t); (C1lb
)2 TR BT~ U} (Alc) Mos(t) =, (hwg)2n(G.b);
SQu(t) ’ o+~ Hor AR
M 5(t) = Mgo(t) = M 14(t) = M 4y(1); (C19

etc. Subindex naught indicates evolution of operators in
Heisenberg representation with,, and § stands for func- - - .
tional derivative; the higher order terms are of ever increas- Mas(t)= 2 [VaoVqwql7(a.1);
ing complexity. q

Mo(t) =M ft)= >, (hwg)Veogn(d,t); (Cld
APPENDIX B: COMPLEMENT TO EQ. (15 q

The coefficientsy; in Eq. (15) are M34(t)=|\7|43(t)22 ﬁwi[ﬁiwiﬁiw&] 2(@.0):
q
2,(6,Q0)=[[1- exp{A (. Qi VA(E.Qi 11+ 42 o), (C1e
(613 Mad0)=3 (hod)[VioFeodln(@n;  (C10
q

A(G,Qi) =Fo(t)i(wg: 6~ 0+ Fa()-Vi(wgro—®g)  and where

> - > - h h
+F (1) [hwgoVewas o~ fiwgV qog], 7(q)=v (D[1+ v (D)]. (Clg
(B1b)
APPENDIX D:
THE KINETIC COEFFICIENTS IN EQS. (19)
- h R
a,(q,Q;t)= 5 (wg+ g1 wg)ay(G,Qst), (Blo The kinetic coefficients in Eq$19) are
1 R
Ne(t)= 3 2 frog(Vawg)®az(G:)M5,' (1),  (Dla
45(6,Q:t)=0(d,Q)a1(d,Q;t), (B1d) !
, 2T
At —t;t')=H(t—t")et® "V —
R h R . h
84(G,Qi1)= 5 (@q1g+ @g)v(4,Q)a(q,Q;1),
1200 — 1747
(B1e X2 INgIPMgg(t)
q
.. . 1.
wherev is defined in Eq(110, and X1_2 Viog d,(G:)Gg(t' 1), (D1b)
WI=Tr{b'bspn(t,00} =[e¥a_,] (B1f) , 2w
q q-aPnth - 0, Y (t'—t;t")=H(t—t")e _t)F
with
X2 INgIPM (1) ap(G;) Gt — 1),
q

2
R —Logr gty — _ i\ ae(t—t")y =7
APPENDIX C: COMPONENTS OF MATRIX M IN EQ. (16) ®I (U—=tt)=H(t—-t")e h?

The elements of matrikl in Eq. (16) in the limit of small 1) i
Q are X2 el *Mag (1)

1 - 2 TR A —(4/
Mu(0)=2 7(G,0); M) =Ma(t)= > hwgn(G,1); X3 Vqog as(git)Gq(t" —1),
i i (C19 (D1d)
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where and H(t—t') is Heaviside's step function. We recall that
Egs. (19) correspond t@Q# 0. The equations for the homo-

., » do X geneous statéQ=0) are Egs.(8a) and (8b) where popula-
Gy’ =)= J_w T [Kq(@) = Tg(w)] tions v are given by Eq(9b), since the linear contributions
in the inhomogeneous variables—which are obtained using
xXexgi(wg—o)(t'-1)], (D1e  the linearized Heims-Jaynes expansion—vanish.
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